If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+18m+77=0
a = 1; b = 18; c = +77;
Δ = b2-4ac
Δ = 182-4·1·77
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4}{2*1}=\frac{-22}{2} =-11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4}{2*1}=\frac{-14}{2} =-7 $
| 5x+7=6x-9-2x | | 10x-{2x(4x+6)}=7(6+x)+4x | | 15.5p-13.68=17.3p | | -1-2(x-8)=-8(x-1)+7 | | 1+23=-3(6x-8) | | 3y+7y=5+2y+2 | | -2y=-X-4 | | -10.8d+18.98=-16.1d-19.2-15.88 | | 64q2^+1=16q | | 3p/4+7/4=2.5 | | d+20=-3d | | 2p/3-10/3=-6 | | 5(2x+7)=-35+10 | | 10=1/2(9.8)(t^2) | | -4x-6+3x=-16 | | 1/2(x+6)=-32 | | 20z-6z=-14 | | 32/t=-4 | | 9z+34z-47z=120 | | 1.7b+3.41=-8.7+b | | -7x²-29x-49=0 | | (X+4)-1=(2x+8) | | 6y+3=4y+25 | | 38=-4-17b | | 7.25/4.9=t^2 | | -19y+6.91=-19.5y+5.56 | | -3-3(7+6x)=7(1-4x) | | 5(4x+6)=-24+14 | | 42x-1.5=17x+83 | | 1/8x2/5=8 | | 5-(-3k)=20 | | -4u-4/3=3/2u-1/4 |